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Green dyadics in reciprocal uniaxial bianisotropic media by cylindrical vector wave functions
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The reciprocal uniaxial bianisotropic medium, which can be fabricated by polymer synthesis techniques, is
a generalization of the well-studied chiral medium. It has potential applications in the design of antireflection
coating, antenna radomes, and interesting microwave components. In the present investigation, based on the
concept of spectral eigenwaves, eigenfunction expansion of the Green dyadics in this class of materials is
formulated in terms of cylindrical vector wave functions. The formulations are greatly simplified by analyti-
cally evaluating the integrals with respect to the spectral longitudinal and radial wave numbers, respectively.
The analysis indicates that the solutions of the source-incorporated Maxwell's equations for a homogeneous
reciprocal uniaxial bianisotropic medium are composed of two eigenwaves traveling with different wave
numbers, and each of these eigenwaves is a superposition of two transverse waves and a longitudinal wave.
The Green dyadics of planarly and cylindrically multilayered structures consisting of the reciprocal uniaxial
bianisotropic media can be straightforwardly obtained by applying the method of scattering superposition and
appropriate electromagnetic boundary conditions, respectively. The resulting formulations, which can be theo-
retically verified by comparing their special forms with existing results, provide a fundamental basis to analyze
and understand the physical phenomena of unbounded and multilayered reciprocal uniaxial bianisotropic
media. The method employed here can be generalized to derive the eigenfunction expansion of Green dyadics
in other kinds of medialS1063-651X96)10208-7

PACS numbse(s): 03.40.Kf

I. INTRODUCTION pressed in terms of an expansion of the vector wave func-
tions are required to study Raman and fluorescent scattering
The concept of vector wave functions was first proposedy active molecules embedded in a particl®,17], as well
by Hanser{1] to solve the source-free Maxwell's equations as to establish thé-matrix formulation from Huygens’s
in isotropic media. This vector-wave-function approach hagrinciple and extinction theoreni18,19. Furthermore,
been intensively developed by Felsen and Marcuj/, eigeljfunction expans';ior) of 'the Green d_yadics could also
Morse and FeshbacfB], and Tai[4], to investigate the prowd_e fundamental_ |n5|ght into the physical process_of the
source-incorporated electromagnetic boundary value phénatgrlal l_mder con5|dera_t|0n. However, mu_ch _effort is _stlll
nomena of isotropic media. It has been discovered that foféquired in order to obtain the Green dyadics in any given
some types of electromagnetic boundary value problems d;omplex media when expressed in the full eigenfunction ex-
isotropic media(e.g., microstrip wraparound antenngsj, ~ Pansion of the vector wave functions. . _
circular-shaped microwave radiatd;7], and excitations of ~ With recent development of polymer synthesis techniques
cylindrical waveguides and caviti€8]), field representations [11], increasing attention is being attracted to the analysis of
and Green dyadics by the cylindrical vector wave functiondnteraction o_f eIe_ctromagnetlc waves with interesting micro-
are more useful than those by the planar vector wave fund¥ave materials, in order to determine how to use these ma-
tions. Recently, field representations by the cylindrical vectoterials to provide better solutions to current engineering
wave functions of isotropic media were presented for the’roblems. Among these microwave materials, one should
source-free gyroelectric chiral medif], composite chiral- Mention the reciprocal uniaxial bianisotropic mediiri],
ferrite media[10], reciprocal uniaxial bianisotropic media Pecause of its potential applications in microwave technol-
[11], and uniaxial bianisotropic-ferrite media2]. However, 09y, antenna design, and particularly in antireflection coat-
analytical solutions to the source-incorporated Maxwell'sing. In practice, a reciprocal uniaxial bianisotropic medium
equations in any given complex media still need to be develWith Imear magnetoelectrlq interaction can be fgbrlcated by
oped, so as to provide methodological convenience in studyd'"anging two types of microstructurgshort helices and
ing the physical phenomena of these materials. Q-shaped elementsin _the same |s_otrop|c host material.
The Green dyadic is one of the basic tools that are used t6rom & phenomenological point of view, a homogeneous re-
solve the source-incorporated Maxwell’s equations. It is use¢iProcal uniaxial bianisotropic medium can be characterized
ful both in analyzing radiation problenig,13 and in con- DY the set of constitutive relatiorid 1]
structing integral equations for scattering phenomena I
[14,15. The general representation of the Green dyadic ex- D=¢-E+&-H, (1a
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B=;7H+ZE, (1)  of the spectral eigenwaves in the Fourier transformation
spectral domain, the present formulations are considerably
where simplified by analytically evaluating the integrals with re-
= spect to the spectral longitudinal and radial wave numbers,
e=gilit+e.88;, (2a) respectively. This extended method, which is standard and
. — straightforward, leads to two sets of the eigenfunction expan-
P= et 1266, (2 sion of the Green dyadics in terms of the cylindrical vector
wave functions. The analysis indicates that the solutions of
the source-incorporated Maxwell's equations in a reciprocal
uniaxial bianisotropic medium are composed of two eigen-
E:i(ﬂoso)l/z(_aKJr ﬁerf— ve,e,) (20 Wwaves Fraveling wi_th different wave numbers, and each of
these eigenwaves is a superposition of two transverse waves
and and a longitudinal wave. It is also found that the
o . . Sommerfeld-Weyl-type integrals of dipole radiation in a re-
C=i(moge) Y aly+ Be,X 1+ yee) (2d)  ciprocal uniaxial bianisotropic medium involve only those
Sommerfeld-Weyl-type integrals of dipole radiation in an
denote the magnetoelectric  pseudodyadics.  Herdsotropic medium. The present formulations can be used to
| . =e&+6e stands for the transverse unit dyadic, ayd construct the Green dyadics of planarly and cylindrically
represents the unit vector in thedirection. Instead of three multilayered structures consisting of the reciprocal uniaxial
constitutive parameters for the well-studied chiral mediabianisotropic media, by employing the method of scattering
[20,21], we are facing a medium with seven scalar param-superposition [4,20,2] and appropriate electromagnetic
eters. It is apparent that the constitutive dyadics of the meboundary conditions, respectively. The greatest advantage of
dium satisfy the reciprocal conditiorj22] as well as the the Green dyadics, which are represented in the forms of the
uniformity constraint conditiofi23]. For a lossless reciprocal eigenfunction expansion, is that they provide a fundamental
uniaxial bianisotropic medium, the scalar constitutive paraminsight into the physical process of the reciprocal uniaxial
eterse;, &, W, My, @ B, and y are all real, which are bianisotropic medium, and lay the theoretical foundation to
assumed throughout the present consideration. study the source-incorporated electromagnetic phenomena
From the view point of reciprocal conditiorj22], the involving the reciprocal uniaxial bianisotropic medie.qg.,
constitutive relations ofla) and (1b) are the most general Raman and fluorescent scattering by active molecules em-
forms of uniaxial materials which satisfy the requirements ofbedded in a reciprocal uniaxial bianisotropic medjum
reciprocal theorem. To get an idea of a medium with consti- A closed-form expression of the Green dyadic for a spe-
tutive dyadics of the above forms, we first note that the speecial class of uniaxial bianisotropic media with=8=0, was
cial case of3B=y=0 corresponds to the transversely chiralfirst derived for the reciprocal_cag@0], and later for the
uniaxial bianisotropic medium studied earl[@4]. This me- nonreciprocal case,-¢-e,#—e,-{-e, [31]. In [32], a rigor-
dium can be created by suspending metal helices in an is@us investigation was presented by Weiglhofer for the pos-
tropic host material in such a way that the axes of all helicesibility of deriving the closed-form representations of the
are perpendicular to theaxis, but possess arbitrary orienta- Green dyadics in a general uniaxial media. In that paper, it
tions and locations. In another special case withy=0, the =~ was shown that at least one of three possible relations among
present medium becomes the uniaxial omega med2Bh  the constitutive parameters has to be satisfied to allow the
which may be fabricated by immersing two ensembles ofclosed-form solutions of the Green dyadics. It was also
orthogonally positioned)-shaped particles in an isotropic pointed out, however, that these relations are only necessary
host medium. Whena=8=0, the medium is called a relations and not sufficient relations to allow the closed-form
uniaxial chiral mediuni26], which can be realized by mix- solution. The most important of these three cases is the case
ing conductive helices in an isotropic host medium in such avith B=y=0, for which the closed-form solutions of the
manner that the axes of all helices are parallel toztaxis = Green dyadics were presented[B2]. Most recently, Olys-
but with random locations. The medium under consideratiodager [33] presented closed-form representations of the
reduces to a uniaxial chiro-omega medium, jasanishes Green dyadics for a uniaxial bianisotropic media witk 0.
[27]. A uniaxial chiro-omega medium, fabricated by immers-In view of the uniformity constraint condition for the
ing both metal helices anfl-shaped elements in the same uniaxial bianisotropic medi§23], the materials treated in
isotropic host medium in a certain manner, may find appli{30—33 are just special cases of the media studied here. The
cations in the design of antireflection coating and antennanethods used by the authors[@0—33 do not seem appli-
radomes. cable for the present most general reciprocal uniaxial bi-
The reciprocal uniaxial bianisotropic medium is a subsetanisotropic media to allow the closed-form representations of
of the wider class referred to as bianisotropic media. Importhe Green dyadics. Moreover, the Green dyadics represented
tant research on general bianisotropic media have been prthe forms of the eigenfunction expansion seem to be more
sented by Podi28], Kong[22], and Cher[29], among oth- important and attractive than those expressed in the closed
ers. In contradistinction to these general considerations, thirms in practical applicationge.g., to study quantitatively
present contribution is intended to derive the eigenfunctiorihe Raman and fluorescent scattering by active molecules
expansion of the Green dyadics in a homogeneous reciprocambedded in the given complex media, to establish the
uniaxial bianisotropic medium in terms of the cylindrical T-matrix formulation for the electromagnetic boundary value
vector wave functions. Based on the completeness properfgroblems involving complex media, and to qualitatively take

are the permittivity and permeability dyadics, respectively,
and
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insight into the physical precess of the material under con- The characteristic equation, which determines the wave
sideration. In the following analysis, the harmonic expft) numbers of the eigenwaves propagating in the reciprocal
time dependence is assumed and suppressed throughout. uniaxial bianisotropic medium, can be straightforwardly ob-
tained by requiring the determinant of operatorbe zero.
Il. EIGENWAVES IN RECIPROCAL UNIAXIAL Algebraic manipulation results in
BIANISOTROPIC MEDIUM

1 §2_ 4 2_ 2 2 Aot
Substituting the constitutive relatiori¢a and (1b) into e (fP-a)k +[(k;—a)(e"+f"—a—e'a’) +b(b
the source-incorporated Maxwell's equations, a compact —2e)k?]k2—[(K2—a)2+b%k2]a’ =0 @
form of the field equations in the reciprocal uniaxial bianiso- e z z '
tropic medium is obtained:
P wherek,= (kZ+k3)*? and

we-l  w&1+iVI[EM] [id(n)
ol -iVl wpl | HO|Tlign] @ a=w’[eu—sopo(a’+ )],
where J, and J,,, denote the electric and magnetic exciting b="2ik,a,

currents, respectively.
To examine the physical properties of the eigenwaves in

the reciprocal uniaxial bianisotropic medium, Fourier trans- e=iko(atys'),
formation for the electromagnetic fields and exciting sources (8)
is introduced: f=ikyB,
— 1 ” k —ik-rdk ’
F(r)_m —ooF( )e ’ (4) & =8t/82,
whereF=E, H, J,, andJ,,, andk=k,e, + k. +k.e,. Then a'=w?(eu,— eoioye’).

(3) can be rewritten in the Fourier spectral domain

—_— P T . It is obvious that the characteristic equatitf) is an even
wel wf-f_k ECk) _"]e(k) . (5)  function ofk, (ork,). We can regard this characteristic equa-
ol =kl op-l [[HE)] [[In(k) tion (7) as a function ok, (or k,), wherek,, (or k,) is deter-
mined byk, (or k,). The roots of Eq(7) are designated as
k,=K,q (Or k,=K,q), whereq=1, 2, 3, and 4. It is worthy

For the sake of brevity, Ed5) is rewritten as

C‘If(k)=<l>(k) (6) noting the important property of the roots of E@): k4 (or
o o ko) is independent ofp, with ¢ =tg~*(k/kK,).
where L is a Hermitian operatofi.e., L=L*T, where the The eigenwaves corresponding to i root of (7), ex-

superscripts asterisk anfl denote complex conjugate and pressed in the circular cylindrical coordinate system, can be
transpose, respectively Here W(k)=[E(k),H(k)]", and derived by substituting,=k,q or k,=k4 in the following

D (K)=[iJo(k),i I (K)T". expression:
|
E7 (07 | Calkeka)cod =g +Dg(k, k)sin(d— ) |
Eg';(k) _Cg(kp!kZ)Sln(¢_¢k)+Dg(kp!kZ)Cos¢_¢k)
q

we(k)= Equk) | _ os, Ko7 =K,Bi(K, k)] | o

HZ (k
ngi k>) AG(K, k) COS = ) +BY (K, k) Sin = )
as —AG(ky ko)sin( b= i) + B (K, k;)cos = )
| Hgk) | 1

with ¢=tg~(y/x) and o=p for k,=K,q, and o=z for Eg(kp,kz)=(k§—a)(s’k$+ kﬁ—a)+b2k§, (12
k,=k,q. Here the spectral parameters are found to be

o _ _ M2 12 v ” 1 ” , -
Aq(Kp ko) =ko[ (k=) (&K +k; aHbekﬂ/Eq(kp,'?i)d) Coky ko) = — [iko@Ag (K, k) (ikoB+ k) By (K, k)],

€t
13

Bq(K, k)= kp[e(kg—a)— bk, (k,—f )J/Eg(K, Kz),
(11 and
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1
D5k, k)= - [ikoaAG (K, ko) +K,

—(ikoBHK)AI(K, k)] (14

To reveal the biorthogonality property of these eigen-

waves, Eq(6) should be rewritten in other forms. First, re-
gardingk,,q as the roots of the characteristic equatiay (6)
is rewritten as
A1 W(K) =K, qB1- Wh(K) =P(k), (15
where bothA_1 andB_l are Hermitian operators. These eigen-
waves Wg(k), which form a complete set in the spectral
space[29], are biorthogonality 29,34 \Ifﬁ*(k)-Bl-\Ifg(k)
=N§5pq. Here &, denotes the Kronecker delta function
(i.e.,itis 1 forp=q, and 0 forp+#q).
An alternative useful rewritten form db) is
Ao WE(K) —kyoBy WE(K) =B(K), (16
where bothb\_2 andB_2 are Hermitian operators, and the roots
of the characteristic Eq(7) are considered to bk, . The
eigenwaves of Eq(16), which form a complete set in the
spectral spacg29], are also biorthogonalit}29,34:

W2 (K)-By WE(K)=M25,q.

Based on the completeness properties of the above-presenf&?pecnvely'

eigenwaveslfé(k) andW¥{(k), the solutions of the spectral
source-incorporated equatio®) can be represented in terms
of these eigenwavd®,29,34:

WKW (k)

\I'(k)=% m -P(k) (17
or
WO (k)W (k
(k)= k)W (k) - ®(K). (18)

q (kpq_kp)Né

In this way, the solutions of the spectral source-

incorporated Maxwell’'s equatiofd) are represented in terms

of the spectral eigenwaves in the reciprocal uniaxial bianiso-

tropic medium. These expressiond,7) and (18), are our

starting point in constructing the eigenfunction expansion of
the Green dyadics, as will be reported in detail in the follow-

ing analysis.

Ill. GREEN DYADICS IN RECIPROCAL
UNIAXIAL BIANISOTROPIC MEDIUM

__For the sake of simplicity, we define the Green dyadic’Seudotype ~Green dyadics.
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expressed as a convolution of the current distribution and the

three-dimensional free-space Green dyadics.

Using the definition of Green dyadi€49) and Eqs.(17)
and(18), the spatial Green dyadics in the reciprocal uniaxial
bianisotropic medium can be represented in terms of the cor-
responding spectral eigenwaves

_ 1 (= v OW (k)
G(r,r’ z—f dk>, — -9~ g ikr=r’)
=gz | % (Kyq— k)M
(20
_ 1 (= WKW (k) ,
G(r,r')= J dk>, —3 a g ik (r=r),
87 | o G (Kyg—k, N2 o1

Here the convolution theorem of Fourier transformation has
been employed.

It is helpful to mention that Eq(20) is suitable to con-
struct the Green dyadics of planarly multilayered reciprocal
uniaxial bianisotropic media, while E§21) is a useful tool
to formulate the Green dyadics of a cylindrically multilay-
ered structure consisting of the reciprocal uniaxial bianiso-
tropic media. To represent the Green dyadics in the forms of
the eigenfunction expansion in terms of the cylindrical vec-
tor wave functions, integrals with respect to the spectral lon-
gitudinal and radial wave numbers in Eq20) and (21),
will be evaluated analytically.

A. Analytical evaluation of the integral with respect
to the spectral longitudinal wave number

In this subsection, we will try to represe(®0) in the form
of the eigenfunction expansion in terms of the cylindrical
vector wave functions. For this purpose, the integral with
respect to the spectral longitudinal wave numkgis ana-
Iytically evaluated by using the residue method, which re-
sults in

— [ Ged,I")Gen(r 1)

Gr.r )_[Gmar.r')Gmm(r,r')}
B | o0 2 2 ‘Pé(k)q’é*(k)
"~ 82 Jo dkpf¢k=od¢k¢1§=:1 MS

x @ kad2=2 ) g ik,p cot b= di) gik,pp’ COS B~ i)
(22)

with p=(x?+y?)¥2 Here the X3 dyadicsG.(r,r') and
Gmn(r.r’) are the Green_dyadics of electric and magnetic
types, respectively, whil&,(r,r') and G,,Jr,r’) are the
Notingk,3=—k,; and

G(r,r') in the homogeneous reciprocal uniaxial bianisotropickzs= ~ Kz2, the symmetric root,; andk,, are not included

medium as

E(r) G(r,r')-

H(r)

iJde(r”)

ig.(r) a4V

19

:J’

whereV' is the volume occupied by the electric and mag-

netic exciting currents. DefinitioflL9) indicates that the elec-

in the summation of Eq(22), since these symmetric roots
are automatically taken into account as the spectral azi-
muthal angleg, spans from 0 to 2. It should be recognized
that the following formulations are essentially based on the
fact that the spectral longitudinal wave numlkey, is inde-
pendent of the spectral azimuthal angige.

Substituting into Eq.(22) the explicit expression of

tromagnetic fields associated with the current sources can b]!é(k) and the well-known identities
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e*ikppcosﬁ/’*‘/’k): i (_i)n\]n(kpp)e*in((/)*d)k), (23) and
”:;x ‘Jn(kpp)! j=1
ek’ cos<¢’f¢k>:m;m (D™In(k,p")eM =40, (24) Z(k,p) = :?Eﬁi;) jzg 33
C(kp), J=4

after cumbersome mathematical manipulation by properly
grouping the terms involving the integrals for thg variable
and introducing the cylindrical vector wave functions, we The Green dyadic of electric typ.«(r,r') can be obtained

end up with from Gmm(r r'), with the replacement ohg, bg, cg, é
B 2 4 bé', andcé' by dg, eg, f g, dé', é , andfZ , respectlvely.
Grn(r.r’ f dk E M2 Here the expansion coefficients are determlned as
a= q
- 2iDY(k, k,)
X 2 (= 1)Mag(k, kegMi (K, kag) dg(ky k)= — — ==, (34
= —00 p

+b%(k, K, NV (k, k) +c2(Kk, Kyq)
a\"prRzg/Nn ARpifzg/ T gl Rp 1Pz o . -
2k, Cq(k, ky) N 2[ikoy—K,Bg(K, k)]

XLk, kg llaZ (k, koM (K, —kyq) Calks oka) == — 1 ke,
' (35
1)’ _
+bZ (k, ko N (K, —kyg)
+cZ (K, ko LAY (K, —kyg), (25) e 2i T s kLikoy—K,BJ(k, k)]
. . q( p z)_k2 p q( p z) we
where the primes over the vector wave functions denote that q z 36)

they are evaluated at. Here, the techniques of mathemati-

cal manipulation are similar to those we have use®l2]

to obtain the field representations in the source-free region,. -, and k.=k da'(k k) eo"(k k), and
prz prNZ

The expansion coefficients are found to be f"’(k,, k) can be separately obtained frog(k, k).
" . 2iBg(k, k,) eq(k,.k), and fg(k,,k), with the replacement .of
ag(ky k) == ———, (26) "(k k), Dg(k, k), and fikgy—k,B§(k,.k,)] by their
P complex conjugates, respectively. The pseudotype Green dy-
2kAT(K, k) 2 k,AJ(k, k,) adics.Gem(r,r’) (;an Zbe obtaizned frgnGEnm(r,r’),Zwith the
kK e r— s_ubstltutlon_ofaq, bg, andcg by_ dg, eq andfg, respec-
Pz z tively; and G, (r,r’) can be derlved fronGmm(r,r’), with
the replacement o&Z , bé , andc by dZ’, é andfé',
K,Aq(K, Kz) separately.
+ k, ' (28) It should be mentioned that the present eigenfunction ex-
pansion of the Green dyadics can be reduced to the counter-
with kq=(k§+ k’2))1/2' o=z, and k,=kyq. ag/(kp:kz); parts of a reciprocal chiral mediuf0], if letting ¢,=¢,=¢,
Mmi= p=u, a=y=§., andB=0 in the constitutive relations.
This set of eigenfunction representations of the Green dy-
adics can be used to construct the Green dyadics of planarly
multilayered reciprocal uniaxial bianisotropic media, by ap-
plying the method of scattering superpositigh20] and ap-
propriate electromagnetic boundary conditions.
Straightforward mathematical analysis reveals that for di-
pole sources parallel to theaxis, only terms corresponding
to n=0 exist for the Green dyadics, while the Green dyadics
(i) — (i) of dipole sources perpendicular to thaxis contain only the
Mi (K, ko) =V W (K, k)], 29 n=1 terms. Therefore, Sommerfeld-Weyl-type integrals of
_ 1 _ dipole radiation in a reciprocal uniaxial bianisotropic me-
N (k, k,)= PAS Mk, k), (30 dium involve only those Sommerfeld-Weyl-type integrals of
a dipole radiation in an isotropic mediuf85]. So various ap-
() _ () proximate, asymptotic, and numerical methods for
Lo (ky ko) =V, o), S Sommerfeld-Weyl-type integral85] can be applied to study
where the generating function is the electromagnetic resonance, radiation, propagation, and
_ _ _ scattering phenomena of planarly multilayered reciprocal
Wk, k) =20 (k,p)e 1 k=nd), (32 uniaxial bianisotropic media.

bZ(k, kp)=—

2ik,
c ( Z)_ kZ

bg'(kp,kz), and cg'(kp,kz) can be separately derived from
aq(k,,k,), bg(k,,k,), andcg(k, k,), with the replacement
of Ag(k, k,) andBg(k,,k,) by their complex conjugates,
respectively. The roots of the characteristic equati@n
k,=K,q, are such chosen that Rg[]>0 for z>z', and
Relk,4] <0 forz<z', where Rg ] denotes the real part of the
complex function. The cylindrical vector wave functions are
defined as
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B. ANALYTICAL EVALUATION OF THE INTEGRAL
WITH RESPECT TO THE SPECTRAL RADIAL
WAVE NUMBER

In this subsection, we will try to represent E@®1) in
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lindrical vector wave functions. To this end, employing iden-
tities (23) and (24), the integral with respect to the spectral
radial wave numbek , is analytically evaluated by applying
the residue calculus through a modified contour in khje

the form of the eigenfunction expansion in terms of the cy-plane, which results in

: jw fzw 2
— dk d
167 e R $=0 d’k 7

G (r,r")
Gme(l',l'l)

n=-

Gon(r,r')|

G(r.r')= - =
(rr') Gy(r.r')

-

: Jw fzw
v dk d
167 e R $=0 ¢k 7

WA (k) W5 (k)

—ik,(z=2")
A ik
N‘I

X 2 (=0)ulkpgp)e MO0 T imHD(kpgp')e ™8 90, pp’

m=—o0

p 0*
2 ‘I"I(k)\l"l (k) e~ iki(z=2")

Ng

©

X 2 (D) HP(kpgp)e™ ™= T iy, (kyyp)e ™ "8, p=p!.

n=-w

Here, we have employed the ident[#/]

dk
fo s

iT — 2
:mgT[Hn (kpqp>)‘]n(kpqp>)]v

T[3n(K,0)In(K,p')]
(Kpq— kp)Né

(38)

wherep.=maxp,p’), p-=min(p,p’), andT stands for a spa-
ti_al dyadic operator, having the property of
T(k,)=—T(—k,).

Substituting the explicit expression & g(k) into (37),

m=—

(37

(?ee(r,r’) can be obtained frorﬁ?mm(r,r’), with the replace-
ment ofaf, bf, c4, af , by, andch by dg, ef, f4,df,
eg' , .and fg' , respectively; Ggpr,r') can be derived
from G, (r,r'), with the separate substitution af, b4, and
cg by dg, eg, andfg; andGpdr,r'), c(’am bg obtaineq from
Gunlr,r'), with the replacement o&f , by , andcj by
dg , e§ , andfg , respectively. Herer,=1 and r,=4 for
p<p’, and =4 andr,=1 for p=p’. The expansion coeffi-
cients used here can be straightforwardly obtained from Egs.
(26)—(28) and (34)—(36), with the substitution ofr=p and

P~ "pq-
In Eq. (39), k3 andk,,, are not included in the summation

and properly grouping the terms invoIvin_g the integrqls Withsincekp3= —k,1 andk,,= —k,,, and these symmetric roots
respect to the), variable, the Green dyadics in the reciprocal are automatically taken into account as the spectral azi-
uniaxial bianisotropic medium can be represented in terms ok, thal angleg, spans from 0 to 2. It should be pointed out

the cylindrical vector wave functions:
2

— i %
GrunlF1') = 7= wdkqu

1
N2
=1 Ng

x 2 (= D)"agkyg k)M, (kyqrky)
+Bf(Kpq k)N (K pqrk) + €A (K o)

XL (Kyq k) 85 (Kpg k)M 72 (K — k)
+b2 (Koq kN2 (K, — k)

+2 (Kog k)L (K g = k). (39)

that the Green dyadics represented in the forms of the eigen-
function expansion, as given in this subsection, can be veri-
fied by comparing their special forms with the counterparts
of reciprocal chiral mediuni21] and isotropic mediuni4].
Moreover, they can be used to construct the Green dyadics of
a cylindrically multilayered structure consisting of the recip-
rocal uniaxial bianisotropic media, by employing the method
of scattering superpositioi4,21] and appropriate electro-
magnetic boundary conditions.

The resulting equations in this subsection indicate that the
electromagnetic waves in an unbounded reciprocal uniaxial
bianisotropic medium are transversely outgoing fep’,
and transversely standing fersp’. This physical property
of the electromagnetic waves is similar to that of a dielectric
leaky antenna with an infinitely long circular cylindrical
structure, positioned in an unbounded isotropic medium.



54 GREEN DYADICS IN RECIPROCAL UNIAXIAL . .. 2923
__From the present formulations, it is easily seen thatrocal uniaxial bianisotropic media can be obtained straight-
G 1.l )=Gr' 1), Gum(r.r =G (r',r), and Go(r,r’)  forwardly by employing the methods of scattering superpo-
=—Gndr',r), which can also be directly obtained from the sition and appropriate electromagnetic boundary conditions,
reciprocal theoreni22]. In addition, it can be straightfor- respectively. The constraint condition of the present ap-
ward to derive the mathematical relationship among thes@roach, which is standard and straightforward, is that the
Green dyadiCS, which could also be obtained from the defispectra| |ongitudina[and radia] wave numbers do not de-
nition of the Gregn dyadic&l9) and the source-incorporated pend on the spectral azimuthal angfg. In spite of this
Maxwell's equations3): constraint condition, which makes the approach employed
here only applicable to a limited class of materials, the
present formulations can be used to analyze and understand
the physical phenomena of the source-incorporated electro-
(40 magnetic boundary value problems involving unbounded or
multilayered reciprocal uniaxial bianisotropic media. It is of
_ i _ interest to note that the cylindrical vector wave functions can
Gl r')=—u L[(VXI+iwd) Gudr,r')]. (41 be expanded as discrete sums of the spherical vector wave
@ functions[36]; therefore the present formulations could be
_ extended to solve the problems of spherical structures. Since
Herel denotes the 83 unit dyadic. the reciprocal uniaxial bianisotropic media studied here re-
The electromagnetic fields associated with the excitingcover the isotropic medif4], uniaxial bianisotropic media
sources can be obtained froi®9), by substituting either set [26], transversely chiral uniaxial bianisotropic medi4],
of the above-presented Green dyadics. From the present fofinjaxial chiro-omega medi@7], and the extensively studied
mulations, it can be seen that the solutions of the sourcehiral media[20,21], the present formulations can be specifi-
incorporated Maxwell's equations for a homogeneous recipga|ly applied to these materials, and theoretically verified by
rocal uniaxial bianisotropic medium are composed of tWOomnaring their special forms with the already existed re-
eigenwaves traveling with different wave numbers, and each s corresponding to the isotropic mef# and reciprocal

M andN £ two t vesd a | Ehiral media[20,21]. When the present reciprocal uniaxial
waves(M an represent two transverse wayesid a lon- bianisotropic media reduce to the media treated3i,33,

gitudinal wave. ; .
The essential idea of the method employed here, which ighe Green dyadics formulated here can be represented in

standard and straightforward, can be exploited to derive thglmple closed forms such as those 8039, after the inte-

eigenfunction expansion of the Green dyadics in the Spherlgrals are explicitly evaluated, respectively. In addition, the

cal coordinate system. However, since the wave numbers ¢pethod employed here can be extended to derive the eigen-
the eigenwaves are functions of the direction of these eigedunction expansion of Green dyadics in other kinds of media,
waves, simple compact forms of the field representation§Uch @s transversely isotropic elastic mg@id, transversely
(corresponding to those ©—12)) in the source-free recip- iSotropic piezoelectric solidg38], and transversely isotropic
rocal uniaxial bianisotropic media by the spherical vectorsaturated porous medj&9]. Although the present formula-
wave functions cannot be obtained, and the solutions of th#ons are somewhat cumbersome, which is inevitable due to
source-incorporated Maxwell’s equations cannot be directlijfhe complexity of the material we have tried to tackle, they
formulated in compact forms of the spherical vector waveare important and useful in analyzing and understanding the
functions, either. In the circular cylindrical coordinate sys-(equivalently source-incorporated electromagnetic phenom-
tem, however, it is seen from the present formulations thatena of the reciprocal uniaxial bianisotropic media. Even if
since the wave numbers of the eigenwaves do not depend ahere exist two operations in the present formulations which
the spectral azimuthal angtg, , the solutions of the source- are over infinite domains, the convergence of these opera-
incorporated Maxwell’s equations in the reciprocal uniaxialtions has been numerically examined for the source-free
bianisotropic medium can be represented in compact form§r0b|em5 [9-12. For the source-incorporated problems,
of the cylindrical vector wave functions of isotropic media. yerification for the convergence of the operations is straight-
forward. Moreover, these two operations over infinite do-
mains also exist for isotropic medjd] and reciprocal chiral
IV. CONCLUDING REMARKS media[20,21]; therefore various numerical and asymptotic
In the present paper the eigenfunction expansion of th&ethods[35] can be employed to simplify the computation
Green dyadics in an unbounded reciprocal uniaxial bianisol? Practical applications. In our previous investigation, the
tropic medium are developed in terms of the cylindrical vec-Problems we treated are the source-free Maxwell's equations
tor wave functions, based on the concept of spectral eigerid the given complex medig9—12, while in the present
waves. The analysis indicates that the solutions of thé&tudy we have tried to solve analytically the source-
source-incorporated Maxwell's equations in a reciprocalncorporated problems by the cylindrical vector wave func-
uniaxial bianisotropic medium are composed of two eigentions. From a mathematical point of view, our previous in-
waves traveling with different wavenumbers, and each of/estigation[9-12] is essentially based on the method of
these eigenwaves is a superposition of two transverse wavspectral angular expansion, while the present starting point is
and a longitudinal wave. The Green dyadics for planarly andhe completeness property of the spectral eigenwaves. It is
cylindrically multilayered structures consisting of the recip- believed that the present formulations provide a fundamental

Genlr,1")= = — & L [(VXI =108 G, )],
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