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The reciprocal uniaxial bianisotropic medium, which can be fabricated by polymer synthesis techniques, is
a generalization of the well-studied chiral medium. It has potential applications in the design of antireflection
coating, antenna radomes, and interesting microwave components. In the present investigation, based on the
concept of spectral eigenwaves, eigenfunction expansion of the Green dyadics in this class of materials is
formulated in terms of cylindrical vector wave functions. The formulations are greatly simplified by analyti-
cally evaluating the integrals with respect to the spectral longitudinal and radial wave numbers, respectively.
The analysis indicates that the solutions of the source-incorporated Maxwell’s equations for a homogeneous
reciprocal uniaxial bianisotropic medium are composed of two eigenwaves traveling with different wave
numbers, and each of these eigenwaves is a superposition of two transverse waves and a longitudinal wave.
The Green dyadics of planarly and cylindrically multilayered structures consisting of the reciprocal uniaxial
bianisotropic media can be straightforwardly obtained by applying the method of scattering superposition and
appropriate electromagnetic boundary conditions, respectively. The resulting formulations, which can be theo-
retically verified by comparing their special forms with existing results, provide a fundamental basis to analyze
and understand the physical phenomena of unbounded and multilayered reciprocal uniaxial bianisotropic
media. The method employed here can be generalized to derive the eigenfunction expansion of Green dyadics
in other kinds of media.@S1063-651X~96!10208-7#

PACS number~s!: 03.40.Kf

I. INTRODUCTION

The concept of vector wave functions was first proposed
by Hansen@1# to solve the source-free Maxwell’s equations
in isotropic media. This vector-wave-function approach has
been intensively developed by Felsen and Marcuvitz@2#,
Morse and Feshbach@3#, and Tai @4#, to investigate the
source-incorporated electromagnetic boundary value phe-
nomena of isotropic media. It has been discovered that for
some types of electromagnetic boundary value problems of
isotropic media~e.g., microstrip wraparound antennas@5#,
circular-shaped microwave radiators@6,7#, and excitations of
cylindrical waveguides and cavities@8#!, field representations
and Green dyadics by the cylindrical vector wave functions
are more useful than those by the planar vector wave func-
tions. Recently, field representations by the cylindrical vector
wave functions of isotropic media were presented for the
source-free gyroelectric chiral media@9#, composite chiral-
ferrite media@10#, reciprocal uniaxial bianisotropic media
@11#, and uniaxial bianisotropic-ferrite media@12#. However,
analytical solutions to the source-incorporated Maxwell’s
equations in any given complex media still need to be devel-
oped, so as to provide methodological convenience in study-
ing the physical phenomena of these materials.

The Green dyadic is one of the basic tools that are used to
solve the source-incorporated Maxwell’s equations. It is use-
ful both in analyzing radiation problems@4,13# and in con-
structing integral equations for scattering phenomena
@14,15#. The general representation of the Green dyadic ex-

pressed in terms of an expansion of the vector wave func-
tions are required to study Raman and fluorescent scattering
by active molecules embedded in a particle@16,17#, as well
as to establish theT-matrix formulation from Huygens’s
principle and extinction theorem@18,19#. Furthermore,
eigenfunction expansion of the Green dyadics could also
provide fundamental insight into the physical process of the
material under consideration. However, much effort is still
required in order to obtain the Green dyadics in any given
complex media when expressed in the full eigenfunction ex-
pansion of the vector wave functions.

With recent development of polymer synthesis techniques
@11#, increasing attention is being attracted to the analysis of
interaction of electromagnetic waves with interesting micro-
wave materials, in order to determine how to use these ma-
terials to provide better solutions to current engineering
problems. Among these microwave materials, one should
mention the reciprocal uniaxial bianisotropic medium@11#,
because of its potential applications in microwave technol-
ogy, antenna design, and particularly in antireflection coat-
ing. In practice, a reciprocal uniaxial bianisotropic medium
with linear magnetoelectric interaction can be fabricated by
arranging two types of microstructures~short helices and
V-shaped elements! in the same isotropic host material.
From a phenomenological point of view, a homogeneous re-
ciprocal uniaxial bianisotropic medium can be characterized
by the set of constitutive relations@11#

D5«̄•E1 j̄•H, ~1a!
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B5m̄•H1 z̄•E, ~1b!

where

«̄5« t Ī t1«zezez , ~2a!

m̄5m t Ī t1mzezez ~2b!

are the permittivity and permeability dyadics, respectively,
and

j̄5 i ~m0«0!
1/2~2a Ī t1bez3 Ī t2gezez! ~2c!

and

z̄5 i ~m0«0!
1/2~a Ī t1bez3 Ī t1gezez! ~2d!

denote the magnetoelectric pseudodyadics. Here,
Ī t5exex1eyey stands for the transverse unit dyadic, andej
represents the unit vector in thej direction. Instead of three
constitutive parameters for the well-studied chiral media
@20,21#, we are facing a medium with seven scalar param-
eters. It is apparent that the constitutive dyadics of the me-
dium satisfy the reciprocal conditions@22# as well as the
uniformity constraint condition@23#. For a lossless reciprocal
uniaxial bianisotropic medium, the scalar constitutive param-
eters«t , «z , mt , mz , a, b, and g are all real, which are
assumed throughout the present consideration.

From the view point of reciprocal conditions@22#, the
constitutive relations of~1a! and ~1b! are the most general
forms of uniaxial materials which satisfy the requirements of
reciprocal theorem. To get an idea of a medium with consti-
tutive dyadics of the above forms, we first note that the spe-
cial case ofb5g50 corresponds to the transversely chiral
uniaxial bianisotropic medium studied earlier@24#. This me-
dium can be created by suspending metal helices in an iso-
tropic host material in such a way that the axes of all helices
are perpendicular to thez axis, but possess arbitrary orienta-
tions and locations. In another special case witha5g50, the
present medium becomes the uniaxial omega medium@25#,
which may be fabricated by immersing two ensembles of
orthogonally positionedV-shaped particles in an isotropic
host medium. Whena5b50, the medium is called a
uniaxial chiral medium@26#, which can be realized by mix-
ing conductive helices in an isotropic host medium in such a
manner that the axes of all helices are parallel to thez axis
but with random locations. The medium under consideration
reduces to a uniaxial chiro-omega medium, asg vanishes
@27#. A uniaxial chiro-omega medium, fabricated by immers-
ing both metal helices andV-shaped elements in the same
isotropic host medium in a certain manner, may find appli-
cations in the design of antireflection coating and antenna
radomes.

The reciprocal uniaxial bianisotropic medium is a subset
of the wider class referred to as bianisotropic media. Impor-
tant research on general bianisotropic media have been pre-
sented by Post@28#, Kong @22#, and Chen@29#, among oth-
ers. In contradistinction to these general considerations, the
present contribution is intended to derive the eigenfunction
expansion of the Green dyadics in a homogeneous reciprocal
uniaxial bianisotropic medium in terms of the cylindrical
vector wave functions. Based on the completeness property

of the spectral eigenwaves in the Fourier transformation
spectral domain, the present formulations are considerably
simplified by analytically evaluating the integrals with re-
spect to the spectral longitudinal and radial wave numbers,
respectively. This extended method, which is standard and
straightforward, leads to two sets of the eigenfunction expan-
sion of the Green dyadics in terms of the cylindrical vector
wave functions. The analysis indicates that the solutions of
the source-incorporated Maxwell’s equations in a reciprocal
uniaxial bianisotropic medium are composed of two eigen-
waves traveling with different wave numbers, and each of
these eigenwaves is a superposition of two transverse waves
and a longitudinal wave. It is also found that the
Sommerfeld-Weyl-type integrals of dipole radiation in a re-
ciprocal uniaxial bianisotropic medium involve only those
Sommerfeld-Weyl-type integrals of dipole radiation in an
isotropic medium. The present formulations can be used to
construct the Green dyadics of planarly and cylindrically
multilayered structures consisting of the reciprocal uniaxial
bianisotropic media, by employing the method of scattering
superposition @4,20,21# and appropriate electromagnetic
boundary conditions, respectively. The greatest advantage of
the Green dyadics, which are represented in the forms of the
eigenfunction expansion, is that they provide a fundamental
insight into the physical process of the reciprocal uniaxial
bianisotropic medium, and lay the theoretical foundation to
study the source-incorporated electromagnetic phenomena
involving the reciprocal uniaxial bianisotropic media~e.g.,
Raman and fluorescent scattering by active molecules em-
bedded in a reciprocal uniaxial bianisotropic medium!.

A closed-form expression of the Green dyadic for a spe-
cial class of uniaxial bianisotropic media witha5b50, was
first derived for the reciprocal case@30#, and later for the
nonreciprocal caseez•j̄•ezÞ2ez•z̄•ez @31#. In @32#, a rigor-
ous investigation was presented by Weiglhofer for the pos-
sibility of deriving the closed-form representations of the
Green dyadics in a general uniaxial media. In that paper, it
was shown that at least one of three possible relations among
the constitutive parameters has to be satisfied to allow the
closed-form solutions of the Green dyadics. It was also
pointed out, however, that these relations are only necessary
relations and not sufficient relations to allow the closed-form
solution. The most important of these three cases is the case
with b5g50, for which the closed-form solutions of the
Green dyadics were presented in@32#. Most recently, Olys-
lager @33# presented closed-form representations of the
Green dyadics for a uniaxial bianisotropic media withb50.
In view of the uniformity constraint condition for the
uniaxial bianisotropic media@23#, the materials treated in
@30–33# are just special cases of the media studied here. The
methods used by the authors of@30–33# do not seem appli-
cable for the present most general reciprocal uniaxial bi-
anisotropic media to allow the closed-form representations of
the Green dyadics. Moreover, the Green dyadics represented
in the forms of the eigenfunction expansion seem to be more
important and attractive than those expressed in the closed
forms in practical applications~e.g., to study quantitatively
the Raman and fluorescent scattering by active molecules
embedded in the given complex media, to establish the
T-matrix formulation for the electromagnetic boundary value
problems involving complex media, and to qualitatively take
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insight into the physical precess of the material under con-
sideration!. In the following analysis, the harmonic exp(ivt)
time dependence is assumed and suppressed throughout.

II. EIGENWAVES IN RECIPROCAL UNIAXIAL
BIANISOTROPIC MEDIUM

Substituting the constitutive relations~1a! and ~1b! into
the source-incorporated Maxwell’s equations, a compact
form of the field equations in the reciprocal uniaxial bianiso-
tropic medium is obtained:

F v«̄• Ī

v z̄• Ī2 i“ Ī

v j̄• Ī1 i“ Ī

vm̄• Ī GFE~r !
H~r !G5F iJe~r !iJm~r !G , ~3!

whereJe and Jm denote the electric and magnetic exciting
currents, respectively.

To examine the physical properties of the eigenwaves in
the reciprocal uniaxial bianisotropic medium, Fourier trans-
formation for the electromagnetic fields and exciting sources
is introduced:

F~r !5
1

8p3 E
2`

`

F~k!e2 ik•rdk, ~4!

whereF5E, H, Je , andJm , andk5kxex1kyey1kzez . Then
~3! can be rewritten in the Fourier spectral domain

F v«̄• Ī

v z̄• Ī2k Ī

v j̄• Ī1k Ī

vm̄• Ī GFE~k!

H~k!G5F iJe~k!

iJm~k!G . ~5!

For the sake of brevity, Eq.~5! is rewritten as

L̄•C~k!5F~k!, ~6!

where L̄ is a Hermitian operator~i.e., L̄5L̄*T, where the
superscripts asterisk andT denote complex conjugate and
transpose, respectively!. Here C~k!5@E~k!,H~k!#T, and
F~k!5@iJe~k!,iJm~k!#T.

The characteristic equation, which determines the wave
numbers of the eigenwaves propagating in the reciprocal
uniaxial bianisotropic medium, can be straightforwardly ob-
tained by requiring the determinant of operatorL̄ be zero.
Algebraic manipulation results in

«8~ f 22a!kr
41@~kz

22a!~e21 f 22a2«8a8!1b~b

22e!kz
2#kr

22@~kz
22a!21b2kz

2#a850, ~7!

wherekr5(k x
21k y

2)1/2, and

a5v2@« tm t2«0m0~a21b2!#,

b52ik0a,

e5 ik0~a1g«8!,
~8!

f5 ik0b,

«85« t /«z ,

a85v2~« tmz2«0m0g
2«8!.

It is obvious that the characteristic equation~7! is an even
function ofkr ~or kz!. We can regard this characteristic equa-
tion ~7! as a function ofkr ~or kz!, wherekr ~or kz! is deter-
mined bykz ~or kr!. The roots of Eq.~7! are designated as
kr5krq ~or kz5kzq!, whereq51, 2, 3, and 4. It is worthy
noting the important property of the roots of Eq.~7!: krq ~or
kzq! is independent offk , with fk5tg21(ky/kx).

The eigenwaves corresponding to theqth root of ~7!, ex-
pressed in the circular cylindrical coordinate system, can be
derived by substitutingkr5krq or kz5kzq in the following
expression:

Cq
s~k!5F Eqr

s ~k!

Eqf
s ~k!

Eqz
s ~k!

Hqr
s ~k!

Hqf
s ~k!

Hqz
s ~k!

G53
Cq

s~kr ,kz!cos~f2fk!1Dq
s~kr ,kz!sin~f2fk!

2Cq
s~kr ,kz!sin~f2fk!1Dq

s~kr ,kz!cos~f2fk!

1

v«z
@ ik0g2krBq

s~kr ,kz!#

Aq
s~kr ,kz!cos~f2fk!1Bq

s~kr ,kz!sin~f2fk!

2Aq
s~kr ,kz!sin~f2fk!1Bq

s~kr ,kz!cos~f2fk!

1

4 , ~9!

with f5tg21(y/x) and s5r for kr5krq , and s5z for
kz5kzq . Here the spectral parameters are found to be

Aq
s~kr ,kz!5kr@~kz2 f !~«8kr

21kz
22a!1bekz#/Eq

s~kr ,kz!,
~10!

Bq
s~kr ,kz!5kr@e~kz

22a!2bkz~kz2 f !#/Eq
s~kr ,kz!,

~11!

Eq
s~kr ,kz!5~kz

22a!~«8kr
21kz

22a!1b2kz
2, ~12!

Cq
s~kr ,kz!5

1

v« t
@ ik0aAq

s~kr ,kz!1~ ik0b1kz!Bq
s~kr ,kz!#,

~13!

and
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Dq
s~kr ,kz!5

1

v« t
@ ik0aAq

s~kr ,kz!1kr

2~ ik0b1kz!Aq
s~kr ,kz!#. ~14!

To reveal the biorthogonality property of these eigen-
waves, Eq.~6! should be rewritten in other forms. First, re-
gardingkrq as the roots of the characteristic equation~7!, ~6!
is rewritten as

Ā1•Cq
r~k!2krqB̄1•Cq

r~k!5F~k!, ~15!

where bothĀ1 andB̄1 are Hermitian operators. These eigen-
wavesC q

r~k!, which form a complete set in the spectral

space@29#, are biorthogonality@29,34#: Cp
r* (k)•B1•Cq

r(k)
5Np

2dpq . Here dpq denotes the Kronecker delta function
~i.e., it is 1 forp5q, and 0 forpÞq!.

An alternative useful rewritten form of~6! is

Ā2•Cq
z~k!2kzqB̄2•Cq

z~k!5F~k!, ~16!

where bothĀ2 andB̄2 are Hermitian operators, and the roots
of the characteristic Eq.~7! are considered to bekzq . The
eigenwaves of Eq.~16!, which form a complete set in the
spectral space@29#, are also biorthogonality@29,34#:

Cp
z* ~k!•B̄2•Cq

z~k!5Mp
2dpq .

Based on the completeness properties of the above-presented
eigenwavesC q

z~k! andC q
r~k!, the solutions of the spectral

source-incorporated equation~6! can be represented in terms
of these eigenwaves@2,29,34#:

C~k!5(
q

Cq
z~k!Cq

z* ~k!

~kzq2kz!Mq
2 •F~k! ~17!

or

C~k!5(
q

Cq
r~k!Cq

r* ~k!

~krq2kr!Nq
2 •F~k!. ~18!

In this way, the solutions of the spectral source-
incorporated Maxwell’s equation~5! are represented in terms
of the spectral eigenwaves in the reciprocal uniaxial bianiso-
tropic medium. These expressions,~17! and ~18!, are our
starting point in constructing the eigenfunction expansion of
the Green dyadics, as will be reported in detail in the follow-
ing analysis.

III. GREEN DYADICS IN RECIPROCAL
UNIAXIAL BIANISOTROPIC MEDIUM

For the sake of simplicity, we define the Green dyadics
Ḡ~r ,r 8! in the homogeneous reciprocal uniaxial bianisotropic
medium as

FE~r !
H~r !G5E

V8
Ḡ~r ,r 8!•F iJe~r 8!

iJm~r 8!GdV8, ~19!

whereV8 is the volume occupied by the electric and mag-
netic exciting currents. Definition~19! indicates that the elec-
tromagnetic fields associated with the current sources can be

expressed as a convolution of the current distribution and the
three-dimensional free-space Green dyadics.

Using the definition of Green dyadics~19! and Eqs.~17!
and~18!, the spatial Green dyadics in the reciprocal uniaxial
bianisotropic medium can be represented in terms of the cor-
responding spectral eigenwaves

Ḡ~r ,r 8!5
1

8p3 E
2`

`

dk(
q

Cq
z~k!Cq

z* ~k!

~kzq2kz!Mq
2 e2 ik•~r2r8!,

~20!

Ḡ~r ,r 8!5
1

8p3 E
2`

`

dk(
q

Cq
r~k!Cq

r* ~k!

~krq2kr!Nq
2 e2 ik•~r2r8!.

~21!

Here the convolution theorem of Fourier transformation has
been employed.

It is helpful to mention that Eq.~20! is suitable to con-
struct the Green dyadics of planarly multilayered reciprocal
uniaxial bianisotropic media, while Eq.~21! is a useful tool
to formulate the Green dyadics of a cylindrically multilay-
ered structure consisting of the reciprocal uniaxial bianiso-
tropic media. To represent the Green dyadics in the forms of
the eigenfunction expansion in terms of the cylindrical vec-
tor wave functions, integrals with respect to the spectral lon-
gitudinal and radial wave numbers in Eqs.~20! and ~21!,
respectively, will be evaluated analytically.

A. Analytical evaluation of the integral with respect
to the spectral longitudinal wave number

In this subsection, we will try to represent~20! in the form
of the eigenfunction expansion in terms of the cylindrical
vector wave functions. For this purpose, the integral with
respect to the spectral longitudinal wave numberkz is ana-
lytically evaluated by using the residue method, which re-
sults in

Ḡ~r ,r 8!5F Ḡee~r ,r 8!Ḡem~r ,r 8!

Ḡme~r ,r 8!Ḡmm~r ,r 8!
G

5
i

8p2 E
0

`

dkrE
fk50

2p

dfk(
q51

2
Cq

z~k!Cq
z* ~k!

Mq
2

3e2 ikzq~z2z8!e2 ikrr cos~f2fk!eikrr8 cos~f82fk!,

~22!

with r5(x21y2)1/2. Here the 333 dyadicsḠee~r ,r 8! and
Ḡmm~r ,r 8! are the Green dyadics of electric and magnetic
types, respectively, whileḠem~r ,r 8! and Ḡme~r ,r 8! are the
pseudotype Green dyadics. Notingkz352kz1 and
kz452kz2, the symmetric rootskz3 andkz4 are not included
in the summation of Eq.~22!, since these symmetric roots
are automatically taken into account as the spectral azi-
muthal anglefk spans from 0 to 2p. It should be recognized
that the following formulations are essentially based on the
fact that the spectral longitudinal wave numberkzq is inde-
pendent of the spectral azimuthal anglefk .

Substituting into Eq.~22! the explicit expression of
C q

z~k! and the well-known identities

2920 54DAJUN CHENG AND WEI REN



e2 ikrr cos~f2fk!5 (
n52`

`

~2 i !nJn~krr!e2 in~f2fk!, ~23!

eikrr8 cos~f82fk!5 (
m52`

`

~ i !mJm~krr8!eim~f82fk!, ~24!

after cumbersome mathematical manipulation by properly
grouping the terms involving the integrals for thefk variable
and introducing the cylindrical vector wave functions, we
end up with

Ḡmm~r ,r 8!5
i

8p E
0

`

dkr (
q51

2
1

Mq
2

3 (
n52`

`

~21!n@aq
z~kr ,kzq!Mn

~1!~kr ,kzq!

1bq
z~kr ,kzq!Nn

~1!~kr ,kzq!1cq
z~kr ,kzq!

3Ln
~1!~kr ,kzq!#@aq

z8~kr ,kzq!M2n
~1!8~kr ,2kzq!

1bq
z8~kr ,kzq!N2n

~1!8~kr ,2kzq!

1cq
z8~kr ,kzq!L2n

~1!8~kr ,2kzq!#, ~25!

where the primes over the vector wave functions denote that
they are evaluated atr 8. Here, the techniques of mathemati-
cal manipulation are similar to those we have used in@9–12#
to obtain the field representations in the source-free region.
The expansion coefficients are found to be

aq
s~kr ,kz!52

2iBq
s~kr ,kz!

kr
, ~26!

bq
s~kr ,kz!52

2kqAq
s~kr ,kz!

krkz
1

2

kq
F11

krAq
s~kr ,kz!

kz
G ,
~27!

cq
s~kr ,kz!5

2ikz
kq
2 F11

krAq
s~kr ,kz!

kz
G , ~28!

with kq5(k z
21k r

2)1/2, s5z, and kz5kzq . aq
s8(kr ,kz),

bq
s8(kr ,kz), andcq

s8(kr ,kz) can be separately derived from
a q

s(kr ,kz), b q
s(kr ,kz), andc q

s(kr ,kz), with the replacement
of Aq

s(kr ,kz) andBq
s(kr ,kz) by their complex conjugates,

respectively. The roots of the characteristic equation~7!,
kz5kzq , are such chosen that Re[kzq].0 for z.z8, and
Re[kzq],0 for z,z8, where Re@ # denotes the real part of the
complex function. The cylindrical vector wave functions are
defined as

Mn
~ j !~kr ,kz!5“@Cn

~ j !~kr ,kz!ez#, ~29!

Nn
~ j !~kr ,kz!5

1

kq
“3Mn

~ j !~kr ,kz!, ~30!

Ln
~ j !~kr ,kz!5“Cn

~ j !~kr ,kz!, ~31!

where the generating function is

Cn
~ j !~kr ,kz!5Zn

~ j !~krr!e2 i ~kzz1nf!, ~32!

and

Zn
~ j !~krr!5H Jn~krr!,

Yn~Krr!,
Hn

~1!~krr!,

Hn
~2!~krr!,

j51
j52
j53
j54.

~33!

The Green dyadic of electric typeḠee~r ,r 8! can be obtained

from Ḡmm~r ,r 8!, with the replacement ofa q
z, b q

z, c q
z, aq

z8 ,

bq
z8 , andcq

z8 by d q
z, eq

z, f q
z, dq

z8 , eq
z8 , and f q

z8 , respectively.
Here the expansion coefficients are determined as

dq
s~kr ,kz!52

2iD q
s~kr ,kz!

kr
, ~34!

eq
s~kr ,kz!52

2kzCq
s~kr ,kz!

krkq
1
2@ ik0g2krBq

s~kr ,kz!#

kqv«z
,

~35!

f q
s~kr ,kz!5

2i

kq
2 FkrCq

s~kr ,kz!1
kz@ ik0g2krBq

s~kr ,kz!#

v«z
G

~36!

for s5z and kz5kzq . dq
s8(kr ,kz), eq

s8(kr ,kz), and

f q
s8(kr ,kz) can be separately obtained fromd q

s(kr ,kz),
eq

s(kr ,kz), and f q
s(kr ,kz), with the replacement of

Cq
s(kr ,kz), D q

s(kr ,kz), and [ik0g2krBq
s(kr ,kz)] by their

complex conjugates, respectively. The pseudotype Green dy-
adics Ḡem~r ,r 8! can be obtained fromḠmm~r ,r 8!, with the
substitution ofa q

z, b q
z, and c q

z by d q
z, eq

z, and f q
z, respec-

tively; and Ḡme~r ,r 8! can be derived fromḠmm~r ,r 8!, with
the replacement ofaq

z8 , bq
z8 , andcq

z8 by dq
z8 , eq

z8 , and f q
z8 ,

separately.
It should be mentioned that the present eigenfunction ex-

pansion of the Green dyadics can be reduced to the counter-
parts of a reciprocal chiral medium@20#, if letting « t5«z5«,
m t5mz5m, a5g5jc , andb50 in the constitutive relations.
This set of eigenfunction representations of the Green dy-
adics can be used to construct the Green dyadics of planarly
multilayered reciprocal uniaxial bianisotropic media, by ap-
plying the method of scattering superposition@4,20# and ap-
propriate electromagnetic boundary conditions.

Straightforward mathematical analysis reveals that for di-
pole sources parallel to thez axis, only terms corresponding
to n50 exist for the Green dyadics, while the Green dyadics
of dipole sources perpendicular to thez axis contain only the
n51 terms. Therefore, Sommerfeld-Weyl-type integrals of
dipole radiation in a reciprocal uniaxial bianisotropic me-
dium involve only those Sommerfeld-Weyl-type integrals of
dipole radiation in an isotropic medium@35#. So various ap-
proximate, asymptotic, and numerical methods for
Sommerfeld-Weyl-type integrals@35# can be applied to study
the electromagnetic resonance, radiation, propagation, and
scattering phenomena of planarly multilayered reciprocal
uniaxial bianisotropic media.
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B. ANALYTICAL EVALUATION OF THE INTEGRAL
WITH RESPECT TO THE SPECTRAL RADIAL

WAVE NUMBER

In this subsection, we will try to represent Eq.~21! in
the form of the eigenfunction expansion in terms of the cy-

lindrical vector wave functions. To this end, employing iden-
tities ~23! and ~24!, the integral with respect to the spectral
radial wave numberkr is analytically evaluated by applying
the residue calculus through a modified contour in thekr

plane, which results in

~37!

Here, we have employed the identity@4#

E
0

`

dkr

T̄@Jn~krr!Jn~krr8!#

~krq2kr!Nq
2

5
ip

2Nq
2 T̄@Hn

~2!~krqr.!Jn~krqr.!#, ~38!

wherer.5max~r,r8!, r,5min~r,r8!, andT̄ stands for a spa-
tial dyadic operator, having the property of
T̄(kr)52T̄~2kr!.

Substituting the explicit expression ofC q
r(k) into ~37!,

and properly grouping the terms involving the integrals with
respect to thefk variable, the Green dyadics in the reciprocal
uniaxial bianisotropic medium can be represented in terms of
the cylindrical vector wave functions:

Ḡmm~r ,r 8!5
i

16p E
2`

`

dkz(
q51

2
1

Nq
2

3 (
n52`

`

~21!n@aq
r~krq8kz!Mn

~t1!
~krq8kz!

1bq
r~krq8kz!Nn

~t1!
~krq8kz!1cq

r~krq8kz!

3Ln
~t1!

~krq8kz!#@aq
r8~krq8kz!M2n

~t2!8~krq82kz!

1bq
r8~krq8kz!N2n

~t2!8~krq82kz!

1cq
r8~krq8kz!L2n

~t2!8~krq82kz!#. ~39!

Ḡee~r ,r 8! can be obtained fromḠmm~r ,r 8!, with the replace-

ment ofa q
r, b q

r, c q
r, aq

r8 , bq
r8 , andcq

r8 by d q
r, eq

r, f d
r, dq

r8 ,

eq
r8 , and f q

r8 , respectively; Ḡem~r ,r 8! can be derived
from Ḡmm~r ,r 8!, with the separate substitution ofa q

r, b q
r, and

c q
r by d q

r, eq
r, and f q

r; and Ḡme~r ,r 8!, can be obtained from

Ḡmm~r ,r 8!, with the replacement ofaq
r8 , bq

r8 , and cq
r8 by

dq
r8 , eq

r8 , and f q
r8 , respectively. Heret151 and t254 for

r<r8, andt154 andt251 for r>r8. The expansion coeffi-
cients used here can be straightforwardly obtained from Eqs.
~26!–~28! and ~34!–~36!, with the substitution ofs5r and
kr5krq .

In Eq. ~39!, kr3 andkr4 are not included in the summation
sincekr352kr1 andkr452kr2, and these symmetric roots
are automatically taken into account as the spectral azi-
muthal anglefk spans from 0 to 2p. It should be pointed out
that the Green dyadics represented in the forms of the eigen-
function expansion, as given in this subsection, can be veri-
fied by comparing their special forms with the counterparts
of reciprocal chiral medium@21# and isotropic medium@4#.
Moreover, they can be used to construct the Green dyadics of
a cylindrically multilayered structure consisting of the recip-
rocal uniaxial bianisotropic media, by employing the method
of scattering superposition@4,21# and appropriate electro-
magnetic boundary conditions.

The resulting equations in this subsection indicate that the
electromagnetic waves in an unbounded reciprocal uniaxial
bianisotropic medium are transversely outgoing forr>r8,
and transversely standing forr<r8. This physical property
of the electromagnetic waves is similar to that of a dielectric
leaky antenna with an infinitely long circular cylindrical
structure, positioned in an unbounded isotropic medium.
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From the present formulations, it is easily seen that
Ḡee~r ,r 8!5Ḡ ee

T ~r 8,r !, Ḡmm~r ,r 8!5Ḡmm
T ~r 8,r !, and Ḡem~r ,r 8!

52Ḡme
T ~r 8,r !, which can also be directly obtained from the

reciprocal theorem@22#. In addition, it can be straightfor-
ward to derive the mathematical relationship among these
Green dyadics, which could also be obtained from the defi-
nition of the Green dyadics~19! and the source-incorporated
Maxwell’s equations~3!:

Ḡem~r ,r 8!52
i

v
«̄21

•@~“3 Ī2 iv j̄!•Ḡmm~r ,r 8!#,

~40!

Ḡme~r ,r 8!5
i

v
m̄21

•@~“3 Ī1 iv z̄!•Ḡee~r ,r 8!#. ~41!

Here Ī denotes the 333 unit dyadic.
The electromagnetic fields associated with the exciting

sources can be obtained from~19!, by substituting either set
of the above-presented Green dyadics. From the present for-
mulations, it can be seen that the solutions of the source-
incorporated Maxwell’s equations for a homogeneous recip-
rocal uniaxial bianisotropic medium are composed of two
eigenwaves traveling with different wave numbers, and each
of these eigenwaves is a superposition of two transverse
waves~M andN represent two transverse waves! and a lon-
gitudinal wave.

The essential idea of the method employed here, which is
standard and straightforward, can be exploited to derive the
eigenfunction expansion of the Green dyadics in the spheri-
cal coordinate system. However, since the wave numbers of
the eigenwaves are functions of the direction of these eigen-
waves, simple compact forms of the field representations
~corresponding to those of@9–12#! in the source-free recip-
rocal uniaxial bianisotropic media by the spherical vector
wave functions cannot be obtained, and the solutions of the
source-incorporated Maxwell’s equations cannot be directly
formulated in compact forms of the spherical vector wave
functions, either. In the circular cylindrical coordinate sys-
tem, however, it is seen from the present formulations that,
since the wave numbers of the eigenwaves do not depend on
the spectral azimuthal anglefk , the solutions of the source-
incorporated Maxwell’s equations in the reciprocal uniaxial
bianisotropic medium can be represented in compact forms
of the cylindrical vector wave functions of isotropic media.

IV. CONCLUDING REMARKS

In the present paper the eigenfunction expansion of the
Green dyadics in an unbounded reciprocal uniaxial bianiso-
tropic medium are developed in terms of the cylindrical vec-
tor wave functions, based on the concept of spectral eigen-
waves. The analysis indicates that the solutions of the
source-incorporated Maxwell’s equations in a reciprocal
uniaxial bianisotropic medium are composed of two eigen-
waves traveling with different wavenumbers, and each of
these eigenwaves is a superposition of two transverse waves
and a longitudinal wave. The Green dyadics for planarly and
cylindrically multilayered structures consisting of the recip-

rocal uniaxial bianisotropic media can be obtained straight-
forwardly by employing the methods of scattering superpo-
sition and appropriate electromagnetic boundary conditions,
respectively. The constraint condition of the present ap-
proach, which is standard and straightforward, is that the
spectral longitudinal~and radial! wave numbers do not de-
pend on the spectral azimuthal anglefk . In spite of this
constraint condition, which makes the approach employed
here only applicable to a limited class of materials, the
present formulations can be used to analyze and understand
the physical phenomena of the source-incorporated electro-
magnetic boundary value problems involving unbounded or
multilayered reciprocal uniaxial bianisotropic media. It is of
interest to note that the cylindrical vector wave functions can
be expanded as discrete sums of the spherical vector wave
functions @36#; therefore the present formulations could be
extended to solve the problems of spherical structures. Since
the reciprocal uniaxial bianisotropic media studied here re-
cover the isotropic media@4#, uniaxial bianisotropic media
@26#, transversely chiral uniaxial bianisotropic media@24#,
uniaxial chiro-omega media@27#, and the extensively studied
chiral media@20,21#, the present formulations can be specifi-
cally applied to these materials, and theoretically verified by
comparing their special forms with the already existed re-
sults corresponding to the isotropic media@4# and reciprocal
chiral media@20,21#. When the present reciprocal uniaxial
bianisotropic media reduce to the media treated in@30,33#,
the Green dyadics formulated here can be represented in
simple closed forms such as those of@30–33#, after the inte-
grals are explicitly evaluated, respectively. In addition, the
method employed here can be extended to derive the eigen-
function expansion of Green dyadics in other kinds of media,
such as transversely isotropic elastic media@37#, transversely
isotropic piezoelectric solids@38#, and transversely isotropic
saturated porous media@39#. Although the present formula-
tions are somewhat cumbersome, which is inevitable due to
the complexity of the material we have tried to tackle, they
are important and useful in analyzing and understanding the
~equivalently! source-incorporated electromagnetic phenom-
ena of the reciprocal uniaxial bianisotropic media. Even if
there exist two operations in the present formulations which
are over infinite domains, the convergence of these opera-
tions has been numerically examined for the source-free
problems @9–12#. For the source-incorporated problems,
verification for the convergence of the operations is straight-
forward. Moreover, these two operations over infinite do-
mains also exist for isotropic media@4# and reciprocal chiral
media @20,21#; therefore various numerical and asymptotic
methods@35# can be employed to simplify the computation
in practical applications. In our previous investigation, the
problems we treated are the source-free Maxwell’s equations
in the given complex media@9–12#, while in the present
study we have tried to solve analytically the source-
incorporated problems by the cylindrical vector wave func-
tions. From a mathematical point of view, our previous in-
vestigation @9–12# is essentially based on the method of
spectral angular expansion, while the present starting point is
the completeness property of the spectral eigenwaves. It is
believed that the present formulations provide a fundamental
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basis to analyze the~equivalently! source-incorporated elec-
tromagnetic phenomena of the reciprocal uniaxial bianisotro-
pic media, to study the Raman and fluorescent scattering by
active molecules embedded in a reciprocal uniaxial bianiso-
tropic medium, and to understand and interpret the physical
process of this class of media. Applications of the present
formulations in analyzing the electromagnetic scattering,
propagation, resonance, and radiation phenomena relevant to
the reciprocal uniaxial bianisotropic media are under inves-
tigation, and will be reported on in subsequent manuscripts.
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